Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.215
Filtrar
1.
J Hazard Mater ; 470: 134193, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569341

RESUMEN

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Asunto(s)
Arsenicales , Compuestos de Hierro , Hierro , Minerales , Sulfuros , Sulfuros/química , Hierro/química , Arsenicales/química , Cinética , Minerales/química , Compuestos de Hierro/química , Oxidación-Reducción , Solubilidad , Arsénico/química , Biopelículas , Acidithiobacillus/metabolismo
2.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569970

RESUMEN

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Asunto(s)
Antimonio , Arsénico , Carbón Orgánico , Restauración y Remediación Ambiental , Grafito , Minería , Contaminantes del Suelo , Antimonio/química , Antimonio/análisis , Grafito/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Restauración y Remediación Ambiental/métodos , Suelo/química
3.
BMC Public Health ; 24(1): 1131, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654206

RESUMEN

BACKGROUND: Gestational diabetes mellitus (GDM) is a complication of pregnancy associated with numerous adverse outcomes. There may be a potential link between GDM and arsenic (As) exposure, but this hypothesis remains controversial. This meta-analysis summarizes the latest studies evaluating the association between As and GDM. METHODS: A comprehensive search of the PubMed, Embase, and Scopus databases up to September 2023 was performed. The pooled estimates with 95% CIs were presented using forest plots. Estimates were calculated with random effects models, and subgroup and sensitivity analyses were conducted to address heterogeneity. RESULTS: A total of 13 eligible studies involving 2575 patients with GDM were included in this meta-analysis. The results showed that women exposed to As had a significantly increased risk of GDM (OR 1.47, 95% CI: 1.11 to 1.95, P = 0.007). Subgroup analyses suggested that the heterogeneity might be attributed to the years of publication. In addition, sensitivity analysis confirmed the robust and reliable results. CONCLUSIONS: This analysis suggested that women exposed to As have a greater risk of GDM. However, the significant heterogeneity across studies requires careful interpretation. REGISTRATION: The PROSPERO registration ID is CRD42023461820.


Asunto(s)
Arsénico , Diabetes Gestacional , Humanos , Diabetes Gestacional/epidemiología , Embarazo , Femenino , Arsénico/efectos adversos , Arsénico/toxicidad , Factores de Riesgo
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564256

RESUMEN

Microbial arsenic (As) methylation in paddy soil produces mainly dimethylarsenate (DMA), which can cause physiological straighthead disease in rice. The disease is often highly patchy in the field, but the reasons remain unknown. We investigated within-field spatial variations in straighthead disease severity, As species in rice husks and in soil porewater, microbial composition and abundance of arsM gene encoding arsenite S-adenosylmethionine methyltransferase in two paddy fields. The spatial pattern of disease severity matched those of soil redox potential, arsM gene abundance, porewater DMA concentration, and husk DMA concentration in both fields. Structural equation modelling identified soil redox potential as the key factor affecting arsM gene abundance, consequently impacting porewater DMA and husk DMA concentrations. Core amplicon variants that correlated positively with husk DMA concentration belonged mainly to the phyla of Chloroflexi, Bacillota, Acidobacteriota, Actinobacteriota, and Myxococcota. Meta-omics analyses of soil samples from the disease and non-disease patches identified 5129 arsM gene sequences, with 71% being transcribed. The arsM-carrying hosts were diverse and dominated by anaerobic bacteria. Between 96 and 115 arsM sequences were significantly more expressed in the soil samples from the disease than from the non-disease patch, which were distributed across 18 phyla, especially Acidobacteriota, Bacteroidota, Verrucomicrobiota, Chloroflexota, Pseudomonadota, and Actinomycetota. This study demonstrates that even a small variation in soil redox potential within the anoxic range can cause a large variation in the abundance of As-methylating microorganisms, thus resulting in within-field variation in rice straighthead disease. Raising soil redox potential could be an effective way to prevent straighthead disease.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Oryza/microbiología , Suelo/química , Metilación , Bacterias/genética , Ácido Cacodílico , Oxidación-Reducción , Contaminantes del Suelo/análisis
5.
Environ Sci Technol ; 58(15): 6704-6715, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574268

RESUMEN

The transformation of toxic arsine (AsH3) gas into valuable elemental arsenic (As0) from industrial exhaust gases is important for achieving sustainable development goals. Although advanced arsenic removal catalysts can improve the removal efficiency of AsH3, toxic arsenic oxides generated during this process have not received adequate attention. In light of this, a novel approach for obtaining stable As0 products was proposed by performing controlled moderate oxidation. We designed a tailored Ni-based catalyst through an acid etching approach to alter interactions between Ni and NaY. As a result, the 1Ni/NaY-H catalyst yielded an unprecedented proportion of As0 as the major product (65%), which is superior to those of other reported catalysts that only produced arsenic oxides. Density functional theory calculations clarified that Ni species changed the electronic structure of oxygen atoms, and the formed [NiIII-OH (µ-O)] active centers facilitated the adsorption of AsH2*, AsH*, and As* reaction intermediates for As-H bond cleavage, thereby decreasing the direct reactivity of oxygen with the arsenic intermediates. This work presents pioneering insights into inhibiting excessive oxidation during AsH3 removal, demonstrating potential environmental applications for recovery of As0 from toxic AsH3.


Asunto(s)
Arsénico , Zeolitas , Níquel/química , Electrones , Oxígeno , Gases
6.
Environ Sci Technol ; 58(15): 6475-6486, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38578163

RESUMEN

Arsenic (As) is widely present in the natural environment, and exposure to it can lead to learning and memory impairment. However, the underlying epigenetic mechanisms are still largely unclear. This study aimed to reveal the role of histone modifications in environmental levels of arsenic (sodium arsenite) exposure-induced learning and memory dysfunction in male rats, and the inter/transgenerational effects of paternal arsenic exposure were also investigated. It was found that arsenic exposure impaired the learning and memory ability of F0 rats and down-regulated the expression of cognition-related genes Bdnf, c-Fos, mGlur1, Nmdar1, and Gria2 in the hippocampus. We also observed that inorganic arsenite was methylated to DMA and histone modification-related metabolites were altered, contributing to the dysregulation of H3K4me1/2/3, H3K9me1/2/3, and H3K4ac in rat hippocampus after exposure. Therefore, it is suggested that arsenic methylation and hippocampal metabolism changes attenuated H3K4me1/2/3 and H3K4ac while enhancing H3K9me1/2/3, which repressed the key gene expressions, leading to cognitive impairment in rats exposed to arsenic. In addition, paternal arsenic exposure induced transgenerational effects of learning and memory disorder in F2 male rats through the regulation of H3K4me2 and H3K9me1/2/3, which inhibited c-Fos, mGlur1, and Nmdar1 expression. These results provide novel insights into the molecular mechanism of arsenic-induced neurotoxicity and highlight the risk of neurological deficits in offspring with paternal exposure to arsenic.


Asunto(s)
Arsénico , Ratas , Animales , Masculino , Arsénico/toxicidad , Código de Histonas , Hipocampo , Metilación
7.
Food Chem Toxicol ; 187: 114628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579892

RESUMEN

Environmental factors play an important role in the progression of diabetic nephropathy (DN), and previous study has shown that arsenic exposure can promote kidney damage in DN rats, however there is no relevant mechanism study so far. In this study, an arsenic-exposed (10 mg/L and 25 mg/L) DN mouse model was established through drinking water for 14 weeks. The results showed that 25 mg/L arsenic exposure increased the renal fibrosis in DN mice significantly, and urinary mAlb level increased with the increasing of arsenic exposure level. Transcriptome sequencing showed that autophagy-related pathways were significantly activated under the exposure dose of 25 mg/L, and levels of Beclin1 and p-ATG16L1/ATG16L1 were significantly higher in the 25 mg/L arsenic group compared to the control group. Silico analysis predicted the microRNAs those could regulate the hub genes of Mapk1, Rhoa and Cdc42, and dual-luciferase gene reporter assay was used to verify the targeted binding between these mRNAs and microRNAs. Our results suggested that high arsenic exposure could aggravate the progression of DN by altering autophagy, the miRNA-mRNA axles of let-7a-1-3p, let-7b-3p, let-7f-1-3p, miR-98-3p/Cdc42, Mapk1, Rhoa, could be considered promising targets to explore the mechanisms and therapeutic measures of DN after exposure to high levels of arsenic.


Asunto(s)
Arsénico , Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , Ratas , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Arsénico/toxicidad , Modelos Animales de Enfermedad , Autofagia
8.
Anal Chim Acta ; 1304: 342554, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637038

RESUMEN

BACKGROUND: Many proteins with thiol groups can bind with trivalent arsenic which are termed as arsenic binding proteins, thus change their physiological functions. Therefore, it is vital to analyze the arsenic binding proteins in cells. The Pull-Down strategy based on biotinylated phenylarsenic acid (Bio-PAO(III)) probes is an effective way for analysis of arsenic binding proteins. In this strategy, streptavidin magnetic beads (SA-MBs) was applied to capture the arsenic binding proteins conjugating with Bio-PAO(III) probe. However, strong interaction between SA and biotin makes the elution of arsenic binding proteins not easy. RESULTS: We developed a novel affinity separation strategy to address the challenge of eluting arsenic binding proteins, a key issue with the existing Bio-PAO(III) Pull-Down method. By employing magnetic beads modified with Nα-Bis(carboxymethyl)-l-lysine (NTA-Lys), polyhistidine-tag (His6-Tag), and SA (MB-NTA(Ni)-His6-SA), we established a more efficient purification process. This innovative approach enables selective capture of arsenic binding proteins in HepG2 cells labeled by Bio-PAO(III) probes, facilitating gentle digestion by trypsin for precise identification through capillary high performance liquid chromatography (Cap HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). What is more, the magnetic beads can be regenerated by using imidazole as the eluent, and the obtained MB-NTA(Ni) can be reloaded with His6-SA for next use. Our method successfully identified 41 arsenic binding proteins, including those involved in cytoskeletal structure, heat shock response, transcriptional regulation, DNA damage repair, redox state regulation, mitochondrial dehydrogenase function, and protein synthesis and structure. SIGNIFICANCE: This work contributes to a more comprehensive understanding of the toxic mechanisms of arsenic, potentially providing valuable insights for the prevention or treatment of arsenic-related diseases.


Asunto(s)
Arsénico , Arsénico/análisis , Proteínas Portadoras , Espectrometría de Masas en Tándem , Histidina/química , Fenómenos Magnéticos
9.
Sci Rep ; 14(1): 7647, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561426

RESUMEN

The persistent challenges posed by pollution and climate change are significant factors disrupting ecosystems, particularly aquatic environments. Numerous contaminants found in aquatic systems, such as ammonia and metal toxicity, play a crucial role in adversely affecting aquaculture production. Against this backdrop, fish feed was developed using quinoa husk (the byproduct of quinoa) as a substitute for fish meal. Six isonitrogenous diets (30%) and isocaloric diets were formulated by replacing fish meal with quinoa husk at varying percentages: 0% quinoa (control), 15, 20, 25, 30 and 35%. An experiment was conducted to explore the potential of quinoa husk in replacing fish meal and assess its ability to mitigate ammonia and arsenic toxicity as well as high-temperature stress in Pangasianodon hypophthalmus. The formulated feed was also examined for gene regulation related to antioxidative status, immunity, stress proteins, growth regulation, and stress markers. The gene regulation of sod, cat, and gpx in the liver was notably upregulated under concurrent exposure to ammonia, arsenic, and high-temperature (NH3 + As + T) stress. However, quinoa husk at 25% downregulated sod, cat, and gpx expression compared to the control group. Furthermore, genes associated with stress proteins HSP70 and DNA damage-inducible protein (DDIP) were significantly upregulated in response to stressors (NH3 + As + T), but quinoa husk at 25% considerably downregulated HSP70 and DDIP to mitigate the impact of stressors. Growth-responsive genes such as myostatin (MYST) and somatostatin (SMT) were remarkably downregulated, whereas growth hormone receptor (GHR1 and GHRß), insulin-like growth factors (IGF1X, IGF2X), and growth hormone gene were significantly upregulated with quinoa husk at 25%. The gene expression of apoptosis (Caspase 3a and Caspase 3b) and nitric oxide synthase (iNOS) were also noticeably downregulated with quinoa husk (25%) reared under stressful conditions. Immune-related gene expression, including immunoglobulin (Ig), toll-like receptor (TLR), tumor necrosis factor (TNFα), and interleukin (IL), strengthened fish immunity with quinoa husk feed. The results revealed that replacing 25% of fish meal with quinoa husk could improve the gene regulation of P. hypophthalmus involved in mitigating ammonia, arsenic, and high-temperature stress in fish.


Asunto(s)
Arsénico , Bagres , Chenopodium quinoa , Animales , Suplementos Dietéticos/análisis , Chenopodium quinoa/genética , Arsénico/toxicidad , Amoníaco , Ecosistema , Dieta , Antioxidantes , Caspasas , Alimentación Animal/análisis
10.
Environ Monit Assess ; 196(5): 422, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570386

RESUMEN

The exposure to arsenic and mercury in various insect trophic guilds from two mercury mining sites in Mexico was assessed. The two study sites were La Laja (LL) and La Soledad (LS) mines. Additionally, a reference site (LSR) was evaluated for LS. The terrestrial ecosystem was studied at LL, whereas both the terrestrial ecosystem and a stream called El Cedral (EC) were assessed at LS. The study sites are situated in the Biosphere Reserve Sierra Gorda (BRSG). Mercury vapor concentrations were measured with a portable analyzer, and concentrations of arsenic and mercury in environmental and biological samples were determined through atomic absorption spectrophotometry. Both pollutants were detected in all terrestrial ecosystem components (soil, air, leaves, flowers, and insects) from the two mines. The insect trophic guilds exposed included pollinivores, rhizophages, predators, coprophages, and necrophages. In LS, insects accumulated arsenic at levels 29 to 80 times higher than those found in specimens from LSR, and 10 to 46 times higher than those from LL. Similarly, mercury exposure in LS was 13 to 62 times higher than LSR, and 15 to 54 times higher than in LL. The analysis of insect exposure routes indicated potential exposure through air, soil, leaves, flowers, animal prey, carrion, and excrement. Water and sediment from EC exhibited high levels of arsenic and mercury compared to reference values, and predatory aquatic insects were exposed to both pollutants. In conclusion, insects from mercury mining sites in the BRSG are at risk.


Asunto(s)
Arsénico , Contaminantes Ambientales , Mercurio , Animales , Mercurio/análisis , Arsénico/análisis , Ecosistema , Monitoreo del Ambiente , México , Insectos , Contaminantes Ambientales/análisis , Minería , Suelo
11.
BMC Nephrol ; 25(1): 120, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570752

RESUMEN

BACKGROUND: Chronic Kidney Disease of unknown cause (CKDu) a disease of exclusion, and remains unexplained in various parts of the world, including India. Previous studies have reported mixed findings about the role of heavy metals or agrochemicals in CKDu. These studies compared CKDu with healthy controls but lacked subjects with CKD as controls. The purpose of this study was to test the hypothesis whether heavy metals, i.e. Arsenic (As), Cadmium (Cd), Lead (Pb), and Chromium (Cr) are associated with CKDu, in central India. METHODS: The study was conducted in a case-control manner at a tertiary care hospital. CKDu cases (n = 60) were compared with CKD (n = 62) and healthy subjects (n = 54). Blood and urine levels of As, Cd, Pb, and Cr were measured by Inductively Coupled Plasma- Optical Emission Spectrometry. Pesticide use, painkillers, smoking, and alcohol addiction were also evaluated. The median blood and urine metal levels were compared among the groups by the Kruskal-Wallis rank sum test. RESULTS: CKDu had significantly higher pesticide and surface water usage as a source of drinking water. Blood As levels (median, IQR) were significantly higher in CKDu 91.97 (1.3-132.7) µg/L compared to CKD 4.5 (0.0-58.8) µg/L and healthy subjects 39.01 (4.8-67.4) µg/L (p < 0.001) On multinominal regression age and sex adjusted blood As was independently associated with CKDu[ OR 1.013 (95%CI 1.003-1.024) P < .05].Blood and urinary Cd, Pb, and Cr were higher in CKD compared to CKDu (p > .05). Urinary Cd, Pb and Cr were undetectable in healthy subjects and were significantly higher in CKDu and CKD compared to healthy subjects (P = < 0.001). There was a significant correlation of Cd, Pb and Cr in blood and urine with each other in CKDu and CKD subjects as compared to healthy subjects. Surface water use also associated with CKDu [OR 3.178 (95%CI 1.029-9.818) p < .05). CONCLUSION: The study showed an independent association of age and sex adjusted blood As with CKDu in this Indian cohort. Subjects with renal dysfunction (CKDu and CKD) were found to have significantly higher metal burden of Pb, Cd, As, and Cr as compared to healthy controls. CKDu subjects had significantly higher pesticide and surface water usage, which may be the source of differential As exposure in these subjects.


Asunto(s)
Arsénico , Agua Potable , Metales Pesados , Plaguicidas , Insuficiencia Renal Crónica , Humanos , Cadmio/análisis , Estudios de Casos y Controles , Plomo , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Arsénico/análisis , Cromo
12.
Environ Health Perspect ; 132(4): 47003, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573329

RESUMEN

BACKGROUND: Hypertension is a major cause of death worldwide. Although arsenic exposure has been associated with the risk of hypertension, this association appears nonuniform due to inconsistent results from studies conducted in different populations. Moreover, hypertension is a complex condition with multiple underlying mechanisms and factors. One factor is impaired production and bioavailability of vascular nitric oxide (NO). However, the implications of the effects of arsenic exposure on circulating NO and its association with hypertension in humans are largely unknown. OBJECTIVE: We investigated the dose-response relationship between arsenic exposure and hypertension with vascular NO levels as a potential mediator of arsenic-related hypertension in individuals exposed to a broad range of arsenic. METHODS: A total of 828 participants were recruited from low- and high-arsenic exposure areas in Bangladesh. Participants' drinking water, hair, and nail arsenic concentrations were measured by inductively coupled plasma mass spectroscopy. Hypertension was defined as a systolic blood pressure (SBP) value of ≥140 and a diastolic (DBP) value of ≥90 mmHg. Serum NO levels reflected by total serum nitrite concentrations were measured by immunoassay. A formal causal mediation analysis was used to assess NO as a mediator of the association between arsenic level and hypertension. RESULTS: Increasing concentrations of arsenic measured in drinking water, hair, and nails were associated with the increasing levels of SBP and DBP. The odds of hypertension were dose-dependently increased by arsenic even in participants exposed to relatively low to moderate levels (10-50µg/L) of water arsenic [odds ratios (ORs) and 95% confidence intervals (CIs): 2.87 (95% CI: 1.28, 6.44), 2.67 (95% CI: 1.27, 5.60), and 5.04 (95% CI: 2.71, 9.35) for the 10-50µg/L, 50.01-150µg/L, and >150µg/L groups, respectively]. Causal mediation analysis showed a significant mediating effect of NO on arsenic-related SBP, DBP, and hypertension. CONCLUSION: Increasing exposure to arsenic was associated with increasing odds of hypertension. The association was mediated through the reduction of vascular NO bioavailability, suggesting that impaired NO bioavailability was a plausible underlying mechanism of arsenic-induced hypertension in this Bangladeshi population. https://doi.org/10.1289/EHP13018.


Asunto(s)
Arsénico , Agua Potable , Hipertensión , Humanos , Disponibilidad Biológica , Arsénico/toxicidad , Óxido Nítrico , Bangladesh/epidemiología , Hipertensión/inducido químicamente , Hipertensión/epidemiología
13.
Curr Microbiol ; 81(6): 153, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652152

RESUMEN

This study investigates the impact of bacteria on arsenic reduction in wheat plants, highlighting the potential of microbe-based eco-friendly strategies for plant growth. In the present study, bacterial isolate SPB-10 was survived at high concentration against both form of arsenic (As3+ and As5+). SPB-10 produced 5.2 g/L and 11.3 g/L of exo-polysaccharide at 20 ppm of As3+ and As5+, respectively, whereas qualitative examination revealed the highest siderophores ability. Other PGP attributes such as IAA production were recorded 52.12 mg/L and 95.82 mg/L, phosphate solubilization was 90.23 mg/L and 129 mg/L at 20 ppm of As3+ and As5+, respectively. Significant amount of CAT, APX, and Proline was also observed at 20 ppm of As3+ and As5+ in SPB-10. Isolate SPB-10 was molecularly identified as Bacillus cereus through 16S rRNA sequencing. After 42 days, wheat plants inoculated with SPB-10 had a 25% increase in shoot length and dry weight, and 26% rise in chlorophyll-a pigment under As5+ supplemented T4 treatment than control. Reducing sugar content was increased by 24% in T6-treated plants compared to control. Additionally, SPB-10 enhanced the content of essential nutrients (NPK), CAT, and APX in plant's-leaf under both As3+ and As5+ stressed conditions after 42 days. The study found that arsenic uptake in plant roots and shoots decreased in SPB-10-inoculated plants, with the maximum reduction observed in As5+ treated plants. Bio-concentration factor-BCF was reduced by 90.89% in SPB-10-inoculated treatment T4 after 42 days. This suggests that Bacillus cereus-SPB-10 may be beneficial for plant growth in arsenic-contaminated soil.


Asunto(s)
Arsénico , Bacillus cereus , Microbiología del Suelo , Contaminantes del Suelo , Triticum , Triticum/crecimiento & desarrollo , Triticum/microbiología , Triticum/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/genética , Bacillus cereus/efectos de los fármacos , Arsénico/metabolismo , Contaminantes del Suelo/metabolismo , ARN Ribosómico 16S/genética , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Biodegradación Ambiental , Sideróforos/metabolismo
14.
J Hazard Mater ; 470: 134228, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626683

RESUMEN

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Asunto(s)
Arsénico , Cadmio , Regulación de la Expresión Génica de las Plantas , Lolium , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Cadmio/toxicidad , Lolium/efectos de los fármacos , Lolium/metabolismo , Lolium/genética , Arsénico/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
15.
Open Vet J ; 14(1): 154-163, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633180

RESUMEN

Background: Camel meat tainted with heavy metals or trace elements may pose a health risk to consumers. Heavy metal contamination poses a severe danger due to both their toxicity and bioaccumulation in the food chain. Aim: To estimate the residual levels of heavy metals (Co, Cr, Mn, Se, and As) in muscle, liver, kidney, hair, and serum of three camel breeds (Magaheem, Maghateer, and Wadha) collected from Al-Omran abattoir, Al-Ahsa, Saudi Arabia. Methods: A total of 225 tissue samples (muscles, liver, kidney, serum, and hair) were taken and analyzed using an Atomic Absorption Spectrophotometer. Health risk assessment was assessed using the guidelines set by the US Environmental Protection Agency. Results: Camel breed significantly (p < 0.05) influences Co, Cr, Mn, and Se accumulation and distribution in organs and muscle; however, arsenic accumulation was not significantly affected (p < 0.05) by camel breeds. The highest values of Co, Cr, Se, and Mn in all examined samples were detected in the liver samples of Maghateer and Magaheem breeds. Furthermore, significant strong positive correlation between serum and liver cobalt, chromium, manganese, and arsenic. The estimated daily intake owing to camel meat consumption was less than the tolerated daily intake. Conclusion: Heavy metals were distributed among different breeds of camel. Trace elements (Pb and Cd) in meat and offal were below the international maximum permissible limit. The correlation between samples reflects the role of hair as a good tool for the identification of heavy metal pollution.


Asunto(s)
Arsénico , Metales Pesados , Oligoelementos , Estados Unidos , Animales , Camelus , Metales Pesados/análisis , Carne , Músculos/química , Medición de Riesgo , Cabello/química
16.
J Hazard Mater ; 470: 134133, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574655

RESUMEN

Although biodegradation of organic matter is well-known to trigger enrichment of arsenic (As) in groundwater, the effects of DOM sources and biodegradability on As enrichment remain elusive. In this study, groundwater samples were collected from the Hetao basin to identify DOM source and evaluate biodegradability by using spectral and molecular techniques. Results showed that in the alluvial fan, DOM was mainly sourced from terrestrially derived OM, while DOM in the flat plain was more originated from microbially derived OM. Compared to terrestrially derived DOMs, microbially derived DOMs in groundwater, which had relatively higher H/Cwa ratios, NOSC values and more biodegradable molecules, exhibited higher biodegradability. In the flat plain, microbially derived DOMs with higher biodegradability encountered stronger biodegradation, facilitating the reductive dissolution of Fe(III)/Mn oxides and As enrichment in groundwater. Moreover, the enrichment of As depended on the biodegradable molecules that was preferentially utilized for primary biodegradation. Our study highlights that the enrichment of dissolved As in the aquifers was closely associated with microbially derived DOM with high biodegradability and high ability for primary biodegradation.


Asunto(s)
Arsénico , Biodegradación Ambiental , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Agua Subterránea/microbiología , Arsénico/metabolismo , Arsénico/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química
17.
Sci Total Environ ; 927: 172297, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588736

RESUMEN

Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.


Asunto(s)
Betula , Biodegradación Ambiental , Ceniza del Carbón , Contaminantes del Suelo , Arsénico , Mercurio , Minería , Fertilizantes , Acero , Restauración y Remediación Ambiental/métodos , Suelo/química , Residuos Industriales
18.
J Hazard Mater ; 470: 134232, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593666

RESUMEN

In a 120-day microcosm incubation experiment, we investigated the impact of arsenic contamination on soil microbial nutrient metabolism, focusing on carbon cycling processes. Our study encompassed soil basal respiration, key enzyme activities (particularly, ß-1,4-N-acetylglucosaminidase and phosphatases), microbial biomass, and community structure. Results revealed a substantial increase (1.21-2.81 times) in ß-1,4-N-acetylglucosaminidase activities under arsenic stress, accompanied by a significant decrease (9.86%-45.20%) in phosphatase activities (sum of acid and alkaline phosphatases). Enzymatic stoichiometry analysis demonstrated the mitigation of microbial C and P requirements in response to arsenic stress. The addition of C-sources alleviated microbial C requirements but exacerbated P requirements, with the interference amplitude increasing with the complexity of the C-source. Network analysis unveiled altered microbial nutrient requirements and an increased resistance process of microbes under arsenic stress. Microbial carbon use efficiency (CUE) and basal respiration significantly increased (1.17-1.59 and 1.18-3.56 times, respectively) under heavy arsenic stress (500 mg kg-1). Arsenic stress influenced the relative abundances of microbial taxa, with Gemmatimonadota increasing (5.5-50.5%) and Bacteroidota/ Nitrospirota decreasing (31.4-47.9% and 31.2-63.7%). Application of C-sources enhanced microbial resistance to arsenic, promoting cohesion among microorganisms. These findings deepen our understanding of microbial nutrient dynamics in arsenic-contaminated areas, which is crucial for developing enzyme-based toxicity assessment systems for soil arsenic contamination.


Asunto(s)
Arsénico , Carbono , Microbiología del Suelo , Contaminantes del Suelo , Arsénico/metabolismo , Arsénico/toxicidad , Carbono/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Fósforo/metabolismo , Suelo/química
19.
Sci Total Environ ; 927: 172303, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599398

RESUMEN

BACKGROUND: Children are at high risk for exposure to toxic metals and are vulnerable to their effects. Significant research has been conducted evaluating the role of these metals on immune dysfunction, characterized by biologic and clinical outcomes. However, there are inconsistencies in these studies. The objective of the present review is to critically evaluate the existing literature on the association between toxic metals (lead, mercury, arsenic, and cadmium) and pediatric immune dysfunction. METHODS: Seven databases (PubMed (NLM), Embase (Elsevier), CINAHL (Ebsco), Web of Science (Clarivate Analytics), ProQuest Public Health Database, and ProQuest Environmental Science Collection) were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in February 2024. Rayaan software identified duplicates and screened by title and abstract in a blinded and independent review process. The remaining full texts were reviewed for content and summarized. Exclusions during the title, abstract, and full-text reviews included: 1) not original research, 2) not epidemiology, 3) did not include toxic metals, 4) did not examine an immune health outcome, or 5) not pediatric (>18 years). This systematic review protocol followed the PRISMA guidelines. Rayaan was used to screen records using title and abstract by two blinded and independent reviewers. This process was repeated for full-text article screening selection. RESULTS: The search criteria produced 7906 search results; 2456 duplicate articles were removed across search engines. In the final review, 79 studies were included which evaluated the association between toxic metals and outcomes indicative of pediatric immune dysregulation. CONCLUSIONS: The existing literature suggests an association between toxic metals and pediatric immune dysregulation. Given the imminent threat of infectious diseases demonstrated by the recent COVID-19 epidemic in addition to increases in allergic disease, understanding how ubiquitous exposure to these metals in early life can impact immune response, infection risk, and vaccine response is imperative.


Asunto(s)
Exposición a Riesgos Ambientales , Humanos , Niño , Exposición a Riesgos Ambientales/estadística & datos numéricos , Metales Pesados/toxicidad , Enfermedades del Sistema Inmune/inducido químicamente , Enfermedades del Sistema Inmune/epidemiología , Contaminantes Ambientales , Arsénico/toxicidad , Preescolar , Adolescente , Metales/toxicidad
20.
J Environ Sci (China) ; 143: 35-46, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644022

RESUMEN

Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.


Asunto(s)
Arsénico , Oryza , Selenio , Contaminantes del Suelo , Suelo , Oryza/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Selenio/análisis , Selenio/metabolismo , Arsénico/análisis , Arsénico/metabolismo , Suelo/química , Arsenitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...